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Overloaded electrical systems are a major source of unreliable 
power (outages) in developing countries. Using a random-
ized saturation design, we estimate the impact of energy 
efficient lightbulbs on household electricity consumption 
and local electricity reliability in the Kyrgyz Republic. 
Receiving compact fluorescent lamps (CFLs) significantly 
reduced household electricity consumption. Estimates not 
controlling for spillovers in take-up underestimate the 
impacts of the CFLs, as control households near the treated 
are likely to take-up CFLs themselves. Greater saturation 

of CFLs within a transformer leads to aggregate reliability 
impacts of two fewer days per month without electricity due 
to unplanned outages relative to pure controls. Increased 
electricity reliability permits households to consume more 
electricity services, suggesting that CFL treatment results 
in technological externalities. The spillovers in take-up 
and technological externalities may provide an additional 
explanation for the gap between empirical and engineering 
estimates of the impacts of energy efficient technologies.
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1 Introduction

Overloaded systems are a substantial source of unreliable power in developing countries.

Overloads occur when the grid is asked to deliver more power than its capacity allows, caus-

ing components of the grid to break. Such breakage results in electricity outages, a major

problem for electricity service provision in developing countries. This problem is likely to

worsen in the future for at least two reasons. First, residential electricity demand is expected

to increase with pro-poor development, as households buy their first appliances (Wolfram et

al., 2012), putting further pressure on the existing electrical grid. Additionally, in certain

settings, subsidized electricity prices provide little incentive for service providers to upgrade

infrastructure, resulting in persistent low quality infrastructure (McRae, 2015).

With this in mind, programs distributing energy efficient technologies in developing coun-

tries1 potentially provide an additional benefit beyond reducing emissions and decreasing the

cost of energy services to technology adopters. CFLs are frequently deployed en masse in

developing countries via programs with the specific goals of reducing electricity outages and

increasing reliability of electricity services.2 Compact fluorescent lightbulbs (CFLs), which

consume 25% of the electricity used by traditional incandescent bulbs (per lumin), can re-

duce overall household electricity consumption without requiring a reduction in the hours

of lighting services consumed (DOE, 2009). They may also provide important aggregate

impacts in the form of reduced peak electricity load and improved reliability, permitting

households to consume more electricity services (World Bank, 2006).3 Such technological

externalities, through which the returns to an individual adopting CFLs are increasing in

the fraction of the population utilizing the technology, can be a substantial benefit from

adoption of energy efficient technologies.4

1There are many such programs. Just between 1990 and the mid-2000s (World Bank, 2006), the World
Bank alone committed more than US$11 billion to energy efficiency in developing countries.

2For example, 600,000 CFLs were distributed in Uganda to reduce peak load by 25 MW. In Rwanda,
400,000 CFLs were distributed to reduce peak load by 16 MW and offset the need for diesel-based power
generation. In Ethiopia, 200,000 CFLs were provided to reduce peak load by 6.8 MW to increase reliability.

3At an aggregate level, energy efficient lightbulbs can help address electric power shortages, permit utilities
to reach a greater number of customers with existing supplies, reduce need for investment in capacity and
distribution, accommodate growth in economic activity, and reduce environmental impact.

4We follow the definition of technological externality employed by Foster and Rosenzweig (2010). For a
particular technology, adoption of the technology by others is said to generate a positive (negative) tech-
nological externality if it increases (decreases) an individual’s returns to the adoption of such technology.
Miguel and Kremer (2007) discuss such effects in the context of de-worming medication. By reducing the
exposure to individuals infected with worms, the net benefit of the deworming pill to an individual is small
(as long as the fraction of treated individuals is reasonably high). Similarly, Dupas (2014) cites medical
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The potential gains from distribution of energy efficient technologies in developing countries

are highly promising; however, there is relatively little evidence to date on the empirical

impact of energy efficiency on individual household electricity consumption.5 Perhaps more

notably, there is a dearth of evidence on the technological externalities that may result

from the aggregate consumption impacts of energy efficiency. This is likely due to several

reasons. First, spillovers in the adoption of energy efficient technologies confound the es-

timated impact on individual household energy consumption. Second, data on outcomes

related to infrastructure quality (such as actual outages) tend to be difficult to acquire for

developing countries (Klytchnikova and Lokshin, 2009). And third, levels of energy efficiency

take-up and reliability of electricity services within a community are mutually endogenous6

and jointly explained by community characteristics7, making the causal aggregate impact of

energy efficiency challenging to estimate.

To overcome these empirical challenges and assess the impacts of energy efficient technologies,

we implemented an experimental distribution of CFLs employing a randomized saturation

design, which allows us to account for spillovers when estimating the impact of treatment

on individual household electricity consumption.8 In a novel application of the randomized

saturation design, we experimentally vary the treatment saturation at a technologically-

meaningful and policy-relevant scale. Specifically, we randomize at the level of the typical

infrastructure failure, the distribution transformer.9 While the direct aggregate impacts of

CFL treatment, in the form of reduced transformer-level electricity loads, may be propor-

tional to CFL saturation, the externality benefits are likely to vary non-linearly with CFL

technology saturation. By randomizing saturation intensity at the technologically-relevant

scale, we are able to test for evidence of technological externalities in the form of increased

evidence suggesting that the population of infected mosquitoes decreases as the fraction of households using
a high quality bednet increases, thus reducing the individual benefits from bednet use.

5The notable exception is a quasi-experimental evaluation of a Mexican appliance (air conditioners and
refrigerators) replacement program (Davis, Fuchs and Gertler, 2014).

6Greater consumption of CFLs within a community increases electricity availability. Greater electricity
availability increases the gains from adoption of CFLs, potentially leading households to consume more
CFLs. These effects reinforce each other.

7For instance, CFL consumption and electricity availability may be greater in communities with higher
education levels, higher incomes, etc.

8Baird et al. (2014) demonstrate the use of a randomized saturation design to account for spillovers.
9Distribution transformers, which convert higher-voltage electricity from the distribution system to low-

voltage electricity for household use, are a crucial part of the electrical grid and their failure is a common
source of electricity outages (Glover, Sarma and Overbye, 2011).
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electricity service reliability (reduced blackouts) and increased household electricity con-

sumption in higher saturation transformers.

We implement this experiment in the Kyrgyz Republic, a lower-middle-income developing

country that suffers from frequent electricity outages and therefore offers suitable condi-

tions for research on electricity reliability. Although CFLs were available in some stores at

the project onset, they were not commonly used outside of Bishkek, the capital city. Im-

plemented in a district adjacent to Bishkek, the randomized saturation design employs an

electricity utility’s data on its residential customers and the infrastructure through which

these consumers are served.

Treatment status was randomly assigned in two stages. First, we randomize electricity

transformers to different treatment saturations (i.e. different proportions of households are

assigned to treatment within a transformer). Second, we randomize households individually

to treatment and control groups, according to the transformer saturation intensity assigned

in the first stage. After completing a baseline survey, the treated households receive up to

four CFLs at a highly subsidized price. We follow household monthly electricity consumption

via the electricity utility’s records for 18 months post-intervention to estimate the impacts

on electricity consumption. To measure CFL use and spillovers in adoption, we return for a

follow-up survey one year after CFL distribution.

We measure the impacts of CFLs on residential electricity consumption, both with and with-

out controls for any potential spillovers in CFL take-up. The randomized saturation design

in the initial CFL distribution allows us to test for such spillovers. In our sample, control

households close to treated households are more likely to have CFLs at follow-up than pure

control households in located control transformers. Not accounting for spillovers in take-up

among the control group leads to estimates of electricity consumption reductions that are

downward biased (in other words, they understate the savings from energy efficiency). When

accounting for these spillovers, we find that CFLs lead to a significant reduction in monthly

electricity consumption that falls within the expected range for the technology based on

engineering performance estimates.

Using the transformer-level randomization of treatment intensity, we then test for external-

ity effects resulting from the energy efficiency, in the form of improved electricity reliability.

3



We find that households in transformers with a higher intensity of treatment (i.e., a higher

saturation of households within a transformer receive CFLs) have fewer days reported with-

out electricity due to unplanned outages.10 This result is robust to including a number of

controls, such as the baseline number of reported outages, and is supported by calculations

of expected peak load reduction. We also find evidence suggesting that households in trans-

formers with improved reliability consume more hours of electricity services due to fewer

outages, and that the household energy savings are larger after accounting for this tech-

nological externality. Lastly, using these results we perform a simple cost-benefit analysis,

which illustrates the importance of accounting for these spillovers and technological exter-

nalities when estimating the welfare impacts of such a program.

Our experiment contributes to the literature on energy efficiency in several ways, and offers

a novel experimental design for identifying externalities at various treatment levels.

First, it contributes to the debate regarding the impacts of energy efficient technologies and

their potential to reduce energy demand. Energy efficiency depends not only on the de-

velopment of relevant technologies, but also on the interaction of end-user behavior with

such technologies (Allcott and Mullainathan, 2010). Prior to ours, no experimental or quasi-

experimental studies existed measuring the impacts of energy efficient lighting. The one

previous study of a large-scale CFL distribution program found that approximately 20% of

initial electricity savings dissipated over time (Costolanski et al., 2013), thereby contributing

to skepticism regarding the gains from efficient lighting technologies and from energy effi-

ciency more generally. Our experimental finding that CFL treatment results in a significant

electricity consumption reduction very close in size to the expected technologically feasible

reductions contributes to balance the evidence from such existing misidentified studies. Our

finding is not only relevant for developing countries, but is also consistent with results from

the United States, where lighting is a relatively smaller share of energy consumption.11 This

new evidence suggests that energy efficient lighting, and perhaps other energy efficient tech-

nologies as well, should remain on the menu of potential policy options.

Second, to our knowledge, our experiment is the first to use a randomized saturation design

10We collect data on reported days without electricity due to unplanned outages during both the baseline
and follow-up surveys.

11Burlig et al. (2016) are performing a machine-learning analysis of energy efficiency in California schools.
Their preliminary results indicate substantial savings from the energy efficient lighting interventions.
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to provide evidence of technological externalities at multiple policy-relevant levels. Given

the scale at which technological externalities typically occur, designing an experiment that

can identify such externalities is challenging; as a result, there is relatively little causal em-

pirical evidence on them.12 This study designs such experiment by taking into account the

constraint within the electricity distribution system that most frequently causes electricity

outages and randomly varies the saturation intensity of CFLs at that level. By doing so, we

are able to provide evidence of technological externality effects on both electricity reliability

at the transformer level and on household electricity consumption. We gauge how the exter-

nality varies with the number of treated households within a transformer to decompose the

technology’s overall effect on household energy consumption into its direct and externality

components. Our results suggest that energy efficiency programs can improve electricity

reliability, not only in the Kyrgyz Republic but also in other contexts, if they reach sufficient

levels of saturation. More generally, they speak to the extent to which energy efficiency

programs can accomplish various, and sometimes opposing, goals using a technology-based

solution.13

Third, our experiment contributes to the discussion regarding the energy efficiency gap. In

spite of their promise as potentially welfare-improving, many believe households are not using

energy efficient technologies when they should. Building upon Hausman (1979), cumulative

research suggests an energy efficiency gap due to individuals not maximizing the net present

value of their energy spending when making energy purchase decisions.14 There is a grow-

ing body of work investigating the factors impacting purchase decisions of energy efficient

technologies, thereby causing these investment inefficiencies (Jaffe and Stavins, 1994; Allcott

and Greenstone, 2012; Gillingham and Palmer, 2014). Most existing economic research on

the take-up of energy efficient technologies largely focuses on private adoption decisions and

12A notable exception is Miguel and Kremer (2004), who provide experimental evidence of positive cross-
school externalities from deworming medicines in Kenya, but have to rely on more tentative non-experimental
methods to decompose the overall effect on treated schools into a direct effect and within-school externality
effect. As acknowledged by them: “When local treatment externalities are expected, field experiments can
be purposefully designed to estimate externalities by randomizing treatment at various levels. [...] However,
this multi-level design may not be practical in all contexts: for example, in our context it was not possible
to randomize treatment within schools. Randomization at the level of clusters of schools also dramatically
increases the sample size needed for adequate statistical power, raising project cost.”

13For example, energy efficiency programs may be designed to reduce overall consumption and pollution
or to improve service reliability in a way that could result in increases in electricity consumption.

14Energy efficient products often require a larger upfront cost than the standard products, but exhibit
lower operating costs. Consumers’ decision to invest in energy-saving devices relies on this trade-off between
initial investment and operating costs.
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the returns to individual adopters.15 In contrast, very little attention has been paid to the

role of spillovers in adoption decisions and technological externalities. In their presence, the

level of private investment in some energy efficient technologies may be even less optimal

than previously thought.

Finally, it connects with the literature on infrastructure and development. Research indicates

that electrification is important for development (Dinkelman, 2011; Lipscomb, Mobarak and

Barnham, 2013; Rud, 2012; Van de Walle et al., 2013), and residential access to modern en-

ergy and lighting can improve living standards and productivity (World Bank, 2006). And in

many developing countries, lighting is a major component of residential electricity consump-

tion. Yet access to electricity infrastructure does not guarantee reliable service (Klytchnikova

and Lokshin, 2009). Electricity outages can impact both households (Chakravorty, Pelli and

Marchand, 2013) and firms (Allcott, Collard-Wexler and O’Connell, 2015; Alam, 2013), yet

low-quality electricity infrastructure can be persistent (McRae, 2015).

The remainder of the paper is as follows: Section 2 provides information on electricity use

in the Kyrgyz Republic and the potential impacts of energy efficiency; Section 3 details the

sampling process and randomized design; Section 4 addresses the data collected and results

of the randomization and compliance checks; Section 5 estimates impacts of CFLs at the

household level, both with and without spillovers; Section 6 estimates the impacts of energy

efficient technology at an aggregate level; Section 7 provides additional supporting evidence

of a technological externality; and Section 8 concludes.

2 Institutional setting and energy efficiency

2.1 Electricity services and infrastructure in the Kyrgyz Republic

The Kyrgyz Republic provides a suitable context in which to study energy efficiency and

electricity reliability in a developing country setting.16 Due to its history as part of the

former Soviet Union, the country is highly electrified, with nearly 100 percent of households

covered by formal electricity connections (Gassmann, 2014). Residential electricity demand

15 Interventions to understand or increase uptake of energy efficient technologies have focused on energy
labeling (Newell and Siikamaki, 2015), social norms (Herberich, List, and Price, 2011), information on energy
costs (Allcott and Taubinsky, 2015), and subsidies (Allcott and Sweeney, 2015).

16The country ranks 147th out of 187 countries for GDP (PPP) per capita (IMF, 2012).
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has increased since the country’s independence in 1992. Over the past two decades, the

proportion of total electricity consumption comprised by the residential sector steadily in-

creased, with 63% of the country’s current electricity supply consumed by the residential

sector (Obozov et al., 2013).

Similar to many other developing countries, the electricity infrastructure is insufficient to

meet current and growing electricity demand. In the Kyrgyz Republic, much of the existing

electricity infrastructure dates back to the Soviet Union including all 16 of its power plants

(Zozulinsky, 2007). Ninety percent of electricity generation within the country is hydro-

electric, so supply fluctuates with annual variability in reservoir water levels.17 Technically,

the capacity of both generation and transmission infrastructure could constrain household

electricity services and result in unreliable electricity services (frequent electricity outages);

however, during the study period, distribution constraints are the primary source of unreli-

able service.

Due to very low residential electricity prices ($0.02 per kWh throughout this study), many

households heat with electricity in winter. In spite of low prices, concerns regarding electric-

ity bills and household energy expenditures are common. Household energy expenditures

comprise an estimated 7.1 percent of total household expenditures in the Kyrgyz Republic

(Gassmann, 2014), much of which is due to winter heating. Electric heating leads to large sea-

sonal variations in electricity consumption, with average winter consumption approximately

three times that of summer. The country’s utilities face growing electricity consumption

while constrained by a distribution system designed for substantially lower demand. As a

result, the country is plagued by frequent unplanned outages particularly in winter.18

Transmission and distribution systems are consistently overloaded, acting as a binding con-

straint and source of unplanned outages. To put this in perspective, most of the transformers

have a load factor of 0.9 - 1.2, with 0.7 being the optimal load (Amankulova, 2006).19 These

constraints are a concern for both consumers and the electricity utility. Unplanned outages

typically occur when local distribution systems experience an overload. The distribution

17In years of low water availability, the country has instituted planned, rolling blackouts during the winter.
This did not occur during our study period, according to the electricity utility.

18For example, in 2010 the country had 12,578 unplanned power outages (approximately 34 outages per
day), which is considered unreliable service by international standards (USAID, 2011).

19This is for the 35/220 kV transformers, which is the last step in delivering electricity to homes.
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network was constructed for peak electricity consumption associated with households own-

ing only a few electricity-using durables. However, peak household electricity demand has

increased as households have bought more appliances, which is consistent with predictions

made for pro-poor economic growth in developing countries, more broadly (Wolfram, Gertler

and Shelef, 2012).

Transformers are a critical part of the electricity distribution infrastructure. A distribution

transformer on the electrical grid converts high-voltage electricity to usable, low-voltage elec-

tricity for household consumption (Glover, Sarma and Overbye, 2011). There is a maximum

electricity load that a transformer can transfer at any given time and exceeding that may

lead to unplanned outages. During the study, transformer overloads were the primary source

of unplanned outages. Quality of electricity services is correlated within a transformer, as

households thus are exposed to the same electricity-related shocks. A transformer-level out-

age affects all households sharing the transformer.20

2.2 Energy efficient lighting

Energy efficient technologies have the potential to decrease individual residential electricity

consumption and therefore costs. Using approximately 75% less electricity than incandes-

cent lightbulbs, CFLs are one tool for meeting lighting needs while reducing electricity con-

sumption. If take-up rates are sufficiently high, energy efficient technologies could impact

electricity load at an aggregate level. For example, CFLs could decrease aggregate electricity

demand within a transformer reducing the probability of a transformer overload. By alle-

viating the stress on the infrastructure, energy efficiency could reduce unplanned electricity

outages and increase service reliability.

Prior to this study, CFLs were available for purchase in large home repair stores and markets

located in the capital city, but not in villages. CFLs cost between 100 and 170 Kyrgyz soms,

depending on the quality.21 In contrast, incandescent lightbulbs were available to purchase

in both rural and urban markets for approximately 15 to 20 Kyrgyz soms. Even with low

electricity prices, the payback period for the CFLs was between 1 and 2 years.22 This study

20In our setting, 54 households on average receive their electricity via a single transformer.
21In March 2013, the exchange rate was approximately 1 USD = 46 Kyrgyz soms.
22Payback period calculations (not shown) were based on typical lightbulb use in our sample and electricity

and CFL prices within the region. We show cost-benefit calculations for the first year post-distribution in
Appendix Calculation 4.
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was implemented in a district adjacent to the capital, Bishkek. Given residents of this district

frequently travel to the city, they could have purchased CFLs pre-intervention; however, very

few households outside of the capital used CFLs at baseline.

2.3 Potential impacts of energy efficiency

Based on constraints in the electricity distribution system and the potential for energy effi-

cient technologies to decrease demand both at the household and aggregate-level, we might

expect the following impacts on electricity consumption following installation of CFLs:

1. Impacts on household electricity consumption: The effect of energy efficient lightbulbs

within one’s home depends on the net sum of both engineering and human factors.

Based on engineering calculations, the technologically feasible benefit would be a re-

duction in electricity consumption, and thus in the electricity bill.23 There are, how-

ever, multiple reasons a household’s electricity consumption might not change, might

decrease by less than expected, or might even increase following the installation of

CFLs. These vary from CFLs not meeting their technological promise (poor quality,

failure), human interactions with the technology (incorrect use), human behavioral

responses (rebound effect)24 or some combination of these.25

2. Spillovers: Installation of energy efficient technologies could influence others’ adoption

decisions via channels such as learning, imitation, etc. These spillovers in take-up could

be experienced by households with close linkages to the original adopters, and could be

positive, negative, or zero. If present, spillovers in take-up can bias empirical analyses

that do not account for them. For instance, when estimating the impacts of CFLs

on household electricity consumption, if the comparison group finds alternative means

by which to access the technology, they could also experience reductions in electricity

23With some basic information (for example, information on the wattage of both the original bulb and
the energy efficient bulb to which one is switching, hours of lightbulb use, etc.), one can perform simple
calculations to predict reductions in electricity consumption. We perform such calculations and discuss
them in Section 5.

24By cutting down the energy requirements and monetary costs of lighting, CFLs may promote additional
electricity consumption or generate a “rebound” that offsets the technologically feasible savings. As a result,
the kWh consumed by a household may decrease, remain unchanged or even increase. For theoretical
discussion of the rebound effect, see Borenstein (2015) and Chan and Gillingham (2015). Although the
existing literature appears to agree on the existence of rebound effects, there is much debate over the
magnitude of such an effect (Gillingham, Rapson and Wagner, forthcoming).

25For example, by being more efficient, CFLs will result in less waste heat lost than incandescent bulbs.
This may result in households compensating through other practices, such as winter heating.
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consumption, leading to underestimation of true impacts. A reduction in electricity

consumption may occur, but it may not be detected (or muted) due to contamination

of the comparison group.

3. Aggregate effect: Energy efficient technologies could have an effect on aggregate elec-

tricity consumption within the local distribution system. The sign and magnitude of

this aggregate effect will depend on the proportion of households that use CFLs, as

well as on the sign and magnitude of the impacts they individually experience. If a

large enough proportion of households within a transformer adopt CFLs and their indi-

vidual impacts combine into aggregate electricity savings, the probability of an outage

occurring due to a transformer overload would be reduced, thus increasing reliability

of electricity services.

4. Technological externality: The distribution of CFLs could generate a positive (negative)

technological externality if the returns to a household from adopting such technology

increase (decrease) in the fraction of the population utilizing the energy efficient tech-

nology. In the scenario of a positive technological externality, when consumers install

energy efficient devices at a high saturation and aggregate demand decreases such that

reliability improves, households are able to consume more hours of electricity services.

This effect is experienced by all households within a transformer, regardless of the indi-

vidual household’s own adoption. The returns from CFL adoption increase because the

potential for electricity consumption increases and therefore the potential for energy

savings through CFL use does as well.26

This field experiment employs a randomized saturation design to address these potential

impacts of energy efficiency.

3 Randomized experiment with energy efficiency

3.1 Sampling process

In order to identify transformers and households within the transformers, we used data

from electricity utility records on over 40,000 residential customers in a district adjacent to

26If electricity is limited, the benefits from CFL use are positive but small–zero if there is no electricity.
As electricity becomes more available the benefits increase, possibly in a non-linear way, at a decreasing rate
and/or discontinuously.
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Bishkek, the country’s capital.27 These records contain crucial information for the design

of our sampling procedure. The data identify the address of each of the households in the

district as well as the transformer through which each of them is served.

Within the district for which we have utility data, seven villages (comprising 248 eligi-

ble transformers)28 were chosen due to their accessibility from Bishkek during the winter

months.29 Given that the area surrounding the capital tends to be better off than those in

the country’s other regions, the district in which the study occurs is not representative of the

entire country. In order to improve external validity, the study sample was restricted to the

124 eligible transformers with below median monthly household electricity consumption in

the year prior to the intervention. Such households and transformers are more representative

of the country as a whole. To complete the sampling process, 20 percent of the households

from each transformer were randomly selected to participate in the study.30 Because the

number of households per transformer is heterogeneous, the exact number sampled in each

transformer also varies.

3.2 Experimental saturation design

The randomized saturation design varies household exposure to the CFL technology to test

for evidence of a household energy efficiency effect, spillovers in take-up, and a technological

externality due to aggregate impacts. Transformers are first randomized to differing treat-

ment saturations and then households within those transformers are randomized either to

receive CFLs or to control status, according to the saturation previously assigned.

Figure 1 depicts how treatment status was randomly assigned in two stages. In the first

stage, the 124 sampled eligible transformers were randomized into three groups: control,

lower treatment saturation, and higher treatment saturation. Due to funding constraints,

households in 14 control transformers were not surveyed. This resulted in only 110 eligible

transformers being finally included in the study, with 25, 45, and 40 transformers in control,

27The data were provided by the electricity utility through a Data Use Agreement. The utility, however,
was not informed as to which transformers or households were being treated through the experiment.

28Transformers providing at least 5 households with electricity were eligible. According to the utility,
transformers serving fewer households likely also serve industrial consumers.

29This was to ensure that survey enumerators could reach households in March, when weather conditions
can make transportation challenging.

30Due to funding constraints, households in only 25 of the 39 control transformers were surveyed, resulting
in households in 110 transformers being surveyed.
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lower and higher saturation groups respectively. In control transformers, no study house-

holds were treated. In lower-saturation transformers, 60% of study households were treated.

In higher-saturation transformers, 80% of study households were treated. As mentioned in

the sampling discussion above, 20 percent of the households in each transformer were sam-

pled into the study. Thus, the first stage randomization results in approximately 12% to

16% of all households within treated transformers being assigned to treatment.

In the second stage, a total of 1,000 study households within these 110 transformers were

randomized into either control or treatment status. This resulted in 457 and 543 households

in each group respectively. By design, as depicted in Figure 2, treated households are found

only in treated transformers, in the proportions set by each transformer’s treatment intensity.

Control households, however, can be in either control or treated transformers. The two stages

of randomization also induced spatial heterogeneity in the location of the treated households,

leading to variation in the proximity to and number of treated neighbors.

3.3 Intervention and household survey

In the spring of 2013, all study households were visited and invited to participate in a base-

line survey regarding electricity use. Their treatment status assignment was not disclosed at

the time of the baseline survey. All households were given 150 Kyrgyz soms (approximately

3.26 USD) to compensate them for their time, after finishing the survey.31

After the baseline survey, baseline interaction with the control households was complete. In

contrast, households randomly assigned to the treatment group were offered the opportunity

to purchase up to 4 CFLs at a highly subsidized, randomly-drawn price, via a willingness to

pay experiment.32 The set of possible prices was {0, 5, 10, 15, 20}. The market price for

CFLs was a minimum of 100 KGS, so treated households were paying a maximum of 20%

of market price. The market price for incandescent lightbulbs was between 15 and 20 KGS.

On average, treated households received 3.2 CFLs from the study intervention. Take-up of

CFL treatment was not perfect, as some treated households opted to stop after the survey.

31As of 2011, the average monthly nominal employee wage was 9,352 KGS per month (or an estimated
467 KGS per day of work) (National Statistical Committee of the Kyrgyz Republic, 2012).

32We provided up to four CFLs as pilot surveys indicated that, on average, households had five to six
lightbulbs at baseline. We sought to replace most of their incandescent bulbs with CFLs. The experiment,
which utilizes the Becker-de Groot-Marschak methodology to measure demand for CFLs, is explained in
Meeks (2016).
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The rate of non-compliance that resulted was 12%. In those cases, the household received

zero CFLs.33

All study households were visited again in the spring of 2014, one year following the in-

tervention, for a follow-up survey. Of the original 1,000 study households, 101 addresses

were identified as having new tenants in the year since the intervention. We interviewed all

households currently living at the original addresses, as it was difficult to know exactly when

residents moved or if the CFLs had moved with them.34 After completion of the follow-up

survey, survey respondents were again offered 150 KGS to compensate for their time.

4 Study sample

4.1 Data

We use several datasets, including electricity utility data, baseline and follow-up household

survey data, and GIS spatial data, which are matched at the household-level. All of these

data are then matched to heating degree day data from a nearby weather station. A descrip-

tion is provided in the Appendix.

Electricity utility data: We utilize electricity utility records identifying both transformers

and households served by them, as well as the monthly household electricity bills. These

data start in October 2010 and continue through September 2014. This provides observa-

tions 30 months prior to and 18 months following the intervention, held in March 2013. One

important feature of this time period is that electricity prices remained constant at 0.02 USD

per kWh.35 The utility, however, was not collecting transformer-specific outage data at the

time of the intervention.36

Household survey data: As indicated in the previous section, we conducted two rounds

of household surveys, one immediately prior to the intervention (baseline) and one a year

33For intent-to-treat estimates, these households are considered treated. Compliance is discussed below.
34Survey enumerators made at least four attempts to survey the household. If enumerators were informed

that the previous respondents had moved, then the new residents were surveyed. A total of 835 original
respondents were re-interviewed for the follow-up survey.

35A tariff reform was introduced in late 2014 (see McRae and Meeks (2016) for details of reform) and
therefore we end our analysis in September to avoid conflating the CFL intervention with the tariff change.

36Because electricity consumption data are monthly, we cannot use them to calculate timing of outages.
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following the intervention (follow-up). The baseline survey collected information on appli-

ance ownership and use, lightbulb ownership (type, wattage, etc) and use (room of use,

hours used in a typical day, etc.), electricity-related behaviors, and various household de-

mographics. Importantly, we asked households to report the number of days in the past

month that they did not have electricity due to outages.37 Implementation of both survey

rounds began in the month of March, specifically so that, when asking about the outages in

the month prior, we were capturing winter months.38 The number of CFLs distributed to

each treatment household was tracked. The follow-up survey repeated questions from the

baseline and also asked new questions on perception and understanding of CFLs.

Spatial data: GPS data were collected on the location of each participating house during

the baseline survey. These data points permit various calculations relevant to potential

spillovers in adoption, including the distance to nearest treated household and the number

of treated households within certain radii. In addition, we use GIS data from OpenStreetMap

on locations of all buildings in the study villages. These data permit calculations of the total

number of households located within various radii (e.g., 100 meters, 200 meters, and so on)

of each participating household.39

4.2 Household characteristics

Households in the study sample are small, with an average of just under 4 members. House-

hold monthly income per capita is on average 76 USD per month (2.45 USD per person per

day) and household heads are educated, with 84 percent having finished secondary school.

Most houses (91 percent) are owner-occupied, the majority of which were constructed during

the period of the Soviet Union. They comprise an average of 4.3 rooms, and are typically con-

structed of brick (54 percent) or a hay/adobe mix (38 percent). Houses are served by formal

connections to the electrical grid and metered individually (i.e., houses do not share meters).

Households receive a monthly electricity bill based on the meter readings of their consump-

tion. At baseline, they use an average of 232 kWh per month in the summer (June to

37These questions were piloted extensively prior to the baseline survey. We asked about the number of days
due to heterogeneity in outage length. The transformer repair required and availability of replacement parts
determines the outage length after a transformer overload. According to the utility, transformer outages last
between a few hours and a few days.

38Winter is when electricity demand is the greatest, stressing the transformers. For this reason, outages
are most prevalent in the winter months.

39The calculations of the total number of buildings are further described in Appendix Calculation 1.
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September) and 633 kWh per month – more than double – in the winter (November to

February). On average, households have 8 electricity-using durables40 and many households

(39 percent) report heating with electricity.41 A small proportion have an electric hot water

heater (14 percent), and almost none (2 percent) have air conditioners.

Households largely indicate that they both frequently worry about saving electricity (95

percent) and take measures to save electricity (86 percent). More than half the households

report knowing about energy efficient lightbulbs (56 percent). However, CFLs use was

low. Only a few households had them, and in small numbers (resulting in 0.17 CFLs per

household, on average). The majority of households did not know or believe that CFLs

consume less electricity (70 percent), did not expect savings in their electricity bill from

replace incandescent bulbs with CFLs (72 percent), and did not believe the electricity savings

would pay back the upfront costs of the CFLs (69 percent).42

4.3 Randomization balance

Baseline characteristics were compared both at the transformer and household levels to un-

derstand the outcome of randomization. Comparisons use both household survey data and

data on transformer characteristics, provided by the electricity utility.

Transformer-level balance test results are shown in Appendix Table 1. There are no sta-

tistically significant differences between the transformers treated with a low saturation and

the control transformers, nor are there any statistically significant differences between the

high saturation transformers and the control transformers. The high and low saturation

transformers do have one significant difference from each other. They differ in the number

of households within the transformers. Following Bruhn and McKenzie (2008), we chose not

to re-randomize and instead control for this characteristic in related regressions and perform

additional robustness checks.

Results from the household-level balance tests are shown in Appendix Table 2. The two

40Almost all homes have a television and refrigerator. Approximately three-quarters of households have
electric stoves, an iron, and a clothes washing machine.

41Households conserve on heating. Most households report heating their houses at least sometimes with
coal (80%), and on average they heat 3/4 of all their rooms during winter.

42Households were also unaware of differences in quality (88%) and in potential electricity savings (80%)
between different types and brands of CFL.
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household-level treatment groups are statistically identical along most dimensions. Impor-

tantly, most households in all groups have their own individual electricity meters. There are,

however, two slight differences. Control households are slightly more likely than treatment

households to have a household head that has completed secondary school education, and

to be in homes that are single family buildings (in comparison to the multi-unit apartment

buildings). This difference is about what could be expected by chance. If anything, these

differences would downward bias our results.

A graph of pre-intervention electricity consumption over time, in Appendix Figure 1, high-

lights important heterogeneities in electricity consumption over a year and shows the same

seasonal variation for both treatment and control households. The large spike in winter elec-

tricity consumption is due in large part to electric heating and is the reason that electricity

outages are most frequent in that season. Longer hours of lighting due to shorter days play

a lesser role. The winter peak is somewhat greater among the treated households than the

control in both pre-intervention winters (winter 2011 and winter 2012). To account for these

patterns, our analysis will include household fixed effects and month-by-year fixed effects.

4.4 Compliance and attrition

There are two aspects of the intervention take-up and survey data collection, described in

Section 3.3, with which we might be concerned: (i) whether or not treated households took

the CFLs that we distributed as the treatment, and (ii) whether study households were still

inhabiting the home at time of follow-up survey. We address these issues in the following

ways. First, in our intent-to-treat estimates, treated households that did not comply with

the treatment are considered treated. Second, we obtain estimates including all households

(movers and non-movers) and excluding those houses with new tenants (just non-movers).

Results are consistent across these analyses.
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5 The impacts of energy efficient lighting on household

electricity consumption

5.1 Bench-marking and previewing impacts

Prior to estimating the intervention’s impacts, we first calculate the technologically feasible

expected electricity reductions for the winter, spring/fall, and summer seasons.43 Back-of-

the-envelope calculations for a typical household in our sample, in Appendix Calculation 2

and Appendix Table 3, suggest that replacing 3.2 incandescent lightbulbs of 100 watts each

by CFLs of 21 watts each could potentially decrease electricity consumption by between 26

and 42 kWh per month.44

These technologically feasible savings do not account for human interaction or behavioral

responses to the technology. Estimates of the effect of CFLs in actual use conditions could

be smaller or larger. They can differ from the engineering calculations for reasons such as a

rebound in electricity consumption, a reduction in electricity outages permitting more elec-

tricity services, or spillovers in technology take-up that bias the results. The randomized

saturation design helps us understand the impacts of energy efficient lighting and untangle

the channels through which they operate.

To motivate the regression analysis, we begin with an event study-style graph of electricity

consumption month-by-month (Figure 3). We plot our calculations of the technologically

feasible electricity reductions alongside the estimated impacts of CFL treatment (the re-

sult of comparing treatment relative to control households in control transformers) month-

by-month.45 A few patterns are noticeable. First, the figure shows a downwards shift in

electricity consumption for treatment households post-intervention (with CFL distribution

starting in late March 2013). Second, the impacts are quite noisy, particularly in the winter

months.46 Although they indeed have reductions in electricity consumption, the noisiness

43Through discussions with the electricity utility in fall 2012, we learned that winter (also known as the
“heating season”) is the time of highest electricity demand and greatest strain on transformers.

44During early survey piloting, we learned that households typically used 100 watt bulbs in their homes.
We provided 21 watt CFLs, because they were advertised to be equivalent to 100 watt incandescent bulbs.
These and other underlying assumptions are further described in the Appendix Calculation 2.

45Because in this figure we calculate the treatment impact separately for each month, we cannot include
household fixed effects.

46This noisiness is likely due to some households heating with electricity in the winter (which would cause
a large spike in their electricity consumption), while others heat with coal.
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might make them less salient for treated households. Third, there is much heterogeneity in

the impacts across seasons. Electricity savings start in the months following the distribution

of CFLs in the spring of 2013, and continue over the summer and fall. In the winter, impacts

diverge greatly from the engineering predictions, but in the spring of 2014 the electricity

savings return and are similar to those predicted. The regression analysis that follows looks

more closely into these impacts of the CFL treatment.

5.2 Basic estimates

To assess the impacts on household electricity consumption, we first estimate a simple

difference-in-differences model using the electricity utility records:

qit = τTreati ∗ Postt + βPostt + δTreati + αXit + γt + λi + εi (1)

where qit is household i’s electricity consumption (kWh) in month t, Treati is an indicator

of treatment status, and Xit is a vector of household-level variables.47 Month-by-year fixed

effects, γt, and household fixed effects, λi, address the large seasonal variations in consump-

tion and potential heterogeneities across households in baseline electricity consumption, as

identified in the event-study graph.

The Treati ∗ Postt interaction denotes the household’s assignment to treatment and if that

treatment occurred in that month or prior months. The coefficient on this interaction term,

τ , is therefore an estimate of the average change in household monthly electricity consump-

tion (in kWh) that resulted from random assignment to treatment.

Table 1 reports intent-to-treat estimates of τ . In Table 1, Column 1, the estimated impact

is identified according to the above basic regression, from variation within households over

time, controlling for month-by-year shocks. This basic estimate indicates that the CFL

treatment reduces household electricity consumption by 16 kWh per month. The magnitude

of this impact is only half the expected size based on engineering calculations. However, in

Column 1, the omitted group is comprised of all control households, regardless of whether

47These include controls for number of days in monthly billing period and whether the household uses elec-
tricity for heating. We also control for heating degree days; however, we only have variation in temperature
over time. The 7 villages in the study sample are all covered by one weather station and data are reported
at that level. Nevertheless, we do not expect for there to be much spatial variation in temperatures across
villages included in the study given their size and proximity.
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they are in a treated or control transformer. If there are any spillovers in adoption among

control households close to treatment households, or any technological externality affecting

all households within a treated transformer, the omitted group will be contaminated and the

basic impact may be mis-estimated.

5.3 Accounting for contamination

We re-estimate the impacts of CFL treatment on household electricity consumption, account-

ing for potential contamination within the transformer. We employ the following difference-

in-differences specification:48

qigt = τTreatig ∗Postt +βPostt + δTreatig + θCig ∗Postt +φCig +αXig +γt +λig + εigt (2)

where qigt is our outcome of interest for household i located in transformer group g; Treatig

indicates the treatment status of household i in transformer group g; Cig indicates if the

household i is a control household in a treated transformer group; and Xig is a vector of

variables, additionally including the number of houses served by a particular transformer.

As before, τ is an estimate of the average impact of the CFL treatment on household monthly

electricity consumption; and the new coefficient θ estimates the average impact on control

households in treated transformers. Importantly, the omitted group in these regressions is

now a “pure control”, in that it only includes control households that are located in control

transformers.

The results presented in Table 1, Columns 2 and 3, indicate that the CFL treatment led

to a reduction in household electricity consumption of 30 kWh per month. The coefficients

are significant regardless of the level at which standard errors are clustered. Accounting

for potential contamination within transformer, the estimated impacts are statistically and

substantially larger than basic estimates in Column 1, and comparable to the expected en-

gineering reductions.

We replicate the previous analysis, but this time separately for each season.49 Appendix

48We account for the potential within-transformer contamination in a fashion similar to Gine and Mansuri
(2011) and Banerjee et al. (2014).

49We divide the months according to the electricity utility’s seasonal definitions, with the winter heating
months including November, December, January, and February.
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Table 4 shows that the only season in which the impacts of treatment are of the magnitude

expected and statistically significant is in the spring/fall. Impacts in the winter and summer

seasons are far smaller than expected and insignificant.50 These findings suggest a techno-

logical externality, by which households in higher intensity treatment transformers consume

more electricity due to fewer electricity outages in the winter. Winter is when unplanned

outages most frequently occur, as peak electricity demand is quite high. CFLs have the po-

tential to reduce electricity consumption, but they also have the potential to reduce outages

in winter (more than any other season). If households have more reliable electricity service

(fewer outages) in the winter, then they will be able to consume more electricity services and

we would not see the expected reduction in electricity consumption. Potential technological

externalities could indeed account for heterogeneity in impacts across seasons.

In summary, contamination of control households may be biasing downwards the basic im-

pact estimates. That we see a significant reduction in electricity consumption among control

households in treated transformers suggests that spillovers in CFL take-up may be biasing

downwards the basic impact estimates. Potential technological externalities due to an ag-

gregate effect on electricity reliability at the transformer level may also contribute to the

miss-estimation of impacts. We look more into these and other possible mechanisms in

Section 7. Next, we analyze the impacts of CFL treatment at the transformer level.

6 The impacts of energy efficient lighting on aggregate

electricity loads

6.1 Bench-marking and previewing aggregate impacts

As in many developing countries, in the Kyrgyz Republic outages are most frequently the

result of overloads within the distribution system. Overloads typically occur during peak

times and are more common in the winter, particularly in the winter evenings, when house-

hold energy demand is greatest.

We perform a back-of-the-envelope calculation of the peak load reduction induced by the

CFL treatment. Switching 4 incandescent lightbulbs to CFLs could save 60 kWh per month,

50Based on our ex-ante calculations of the expected electricity savings, we believed that electricity con-
sumption reductions would be greatest in the winter (followed by fall/spring and then summer).
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which is 10% of a 600 kWh household monthly bill. However, lighting is disproportionately

used “on peak”. Therefore, the resulting reduction is actually 21% of the household peak

load demand.51 For a transformer with about 20% of all households treated, this would equal

approximately a 4% reduction in transformer peak load.52

Using household survey data on the number of days without electricity (due to outage) during

the month prior, we provide suggestive evidence of an aggregate impact of transformer-level

treatment on unplanned outages.53 In Figure 4, we plot the reported outages at follow-up

by treatment group. As shown, the distribution of reported outages among households in

treated transformers is shifted leftward (towards zero outages) in comparison to the graphed

responses of households in the control transformers. This figure motivates the regression

analysis that follows.

6.2 Estimating aggregate impacts

We use the transformer-level randomization to estimate the impact on reported unplanned

electricity outages using the following equation:

Oig = πHig + ρLig + βTreatig + ηXig + εig (3)

where Oig is the number of days without electricity due to outages in the month prior to

the follow-up survey as reported by household i in transformer g; Hig indicates if household

i is in a higher-saturation transformer, with between 15 to 18 percent of all households as-

signed to treatment; Lig indicates whether household i is in a lower-saturation transformer,

with between 10 to 14 percent of households assigned to treatment;54 Treatig remains the

household’s own treatment status; and Xg is a vector of transformer-level controls. Standard

51According to the utility, times of peak demand are between 6 to 9 am and 6 to 10 pm. The calculation
assumes a reduction of peak demand of 1.5 kW peak, and switching from 100 W incandescent bulbs to 21
W CFLs (Appendix Calculation 3).

52We “ground-truth” these results by discussing them with our utility collaborators. Engineers indicated
that this would be a substantial reduction in peak demand and would very likely reduce transformer outages.

53The follow-up survey occurred in March and April 2014, so the months in which we are measuring days
without electricity due to outage include February and March.

54In higher (lower) saturation transformers, 80% (60%) of study households were assigned to treatment.
There is heterogeneity in the number of households across transformers, and we sampled 20% of all house-
holds within each transformer to include them in the study. Therefore, the randomized study saturation
proportions result in between 15 to 18 (10 to 14) percent of all households in high (low) saturation trans-
formers actually receiving the CFL treatment
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errors are clustered at the transformer level.55 We also perform the standard error correction

for multiple hypothesis testing developed by List, Shaikh and Xu (2016).

Results in Table 2 indicate that the energy efficient technology led to an aggregate impact

in the form of improved reliability. Table 2, Column 1, shows the basic results at the trans-

former level, given by π and ρ in the equation above. We see between one and two fewer days

without electricity in both the low and high saturation transformers, respectively. However,

the reduction in days without electricity due to outages is only statistically significant for

households in the high saturation treatment transformers. They report approximately half

as many days of outages (two in comparison to four) as households in control transformers.

The estimates are robust to including a suite of different transformer-level controls, most

important of which are the number of households within the transformer and the baseline

number of outages reported. The difference in outage-days reductions between households

in high and low saturation transformers (two versus one) is also statistically significant.

Table 2, Column 2, controls for the reporting household’s own treatment status. High

saturation transformers have more treatment households (by definition), so we may worry

that those households have an incentive to report fewer outages. Accounting for individual

household treatment status shows that such possibility is not a concern. The estimates

remain the same as the basic impacts, suggesting that differences in reporting between

treated and control households are not driving results.

6.3 Evidence of technological externality

We re-estimate the impacts of CFL treatment on household electricity consumption, this

time breaking up the analysis by whether the household is in a higher or lower treatment

saturation transformer. Importantly, these estimations still use variation induced by the

randomized saturation process. Results shown in Table 3 indicate a difference between the

transformers with lower and higher intensities of treatment in the extent to which a tech-

nological externality is created. These results are consistent with our working definition of

a technological externality, in that the more individuals that take up the technology, the

55We can and have also run these regressions collapsing to the transformer level and using the average
reported outages per transformer. In doing so, we get similar results; however, in using the transformer level
average, we lose our ability to control for the respondent household’s own treatment status.
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greater are the returns to the technology.56

The intuition is simple. In higher saturation transformers, the households that take up CFLs

generate a reduction in aggregate demand load substantial enough to significantly decrease

the number of days without electricity due to outages. Therefore, treated households at-

tain smaller reductions in electricity consumption. Although they use fewer Kw per hour

of electricity consumed (due to the greater energy efficiency of CFL technologies), they can

consume more hours of electricity (due to the greater electricity reliability induced by the

take-up of CFLs). In contrast, in the lower saturation transformers, treated households at-

tain much larger overall electricity savings. The households’ take-up of the CFLs reduces to

some extent the aggregate load, but its impact in the number of outage-days is insignificant.

In summary, when a large enough proportion of households take up the CFLs, an aggregate

effect is possible and, if substantial enough, it may induce a technological externality in the

form of a reduction in electricity outages. This increased electricity reliability is experienced

by all households served by the impacted transformer, regardless of whether they themselves

are treated or control households. When controlling for this potential externality, the CFLs

exert a significant reduction in household electricity consumption that is of a similar magni-

tude to that which is technologically feasible. This is the case of the coefficient on the treated

households in low-saturation transformers, which do not experience changes in outage-days.

7 Additional checks and supporting evidence

7.1 Evidence of spillovers in CFL take-up

As discussed in Section 5.3, control households located close to a treated household were likely

to experience spillovers, and this contamination may have biased the measurement of the CFL

treatment impacts on electricity consumption.57 To test whether there are indeed spillovers

in CFL take-up following the intervention, we estimate the impact of our intervention on

56We think of this as an analogy to children within a school being vaccinated against a disease, such as
measles. Vaccinated children provide a positive externality to non-vaccinated children. With each additional
child vaccinated, the probability of a measles outbreak within the school is reduced; however, the propor-
tion of children within the school that are vaccinated must surpass some threshold in order for the school
community to achieve herd immunity.

57Our definition of closeness between households is a distance measure of geographical proximity. As
discussed in Breza (2015), a number of studies have used geographical proximity to measure spillovers,
including Dupas (2014), Godlonton and Thornton (2012), and Cohen, Dupas and Schaner (2015).
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the number of CFLs in a house at the follow-up survey, controlling for the number of CFLs

distributed to the households at baseline. We utilize the spatial variation in exposure of

control households to close treated neighbors induced by the two-stage randomization to

account for potential peer effects in technology adoption as follows:

Yig = βTreatig + θCid + ρNd + θXig + εig (4)

where the new term Cig is an indicator for whether the household i is a control household

with at least one treated household within 100 meters from the house; Nd is the total number

of households within 100 meters from the house;58 and Xig is a vector of controls, including

the number of CFLs the household received from our project at baseline. Standard errors

are clustered at the transformer level.

Table 4 reports the estimated impacts on CFL adoption at the follow-up. Column 1 uses the

basic specification from Eq. 1. As before, these results are expected to be biased because the

omitted group comprises all control households and some of them are potentially contam-

inated by spillovers. Column 2 shows results from Eq. 4, which accounts for spillovers by

controlling for whether a control household is within 100 meters from any treated household;

and Column 3 mirrors the alternative specification given by Eq. 2, which corrects for con-

tamination by including a dummy variable for control households in treated transformers.

Their corresponding omitted groups are detailed at the bottom of each column.

Results from Columns 2 and 3 are similar, as they should be, given that households within

the same transformer are in close proximity spatially.59 Both treated and control households

have an average of half an additional CFL at follow-up, controlling for the CFLs distributed

by our intervention. This result contrasts with the basic specification’s much smaller and

insignificant estimated impact, making clear that spillovers also bias the basic estimates

of the effect on later take-up. Interestingly, the correct estimated impacts suggest that

treatment households likely purchased CFLs themselves between baseline and follow-up, in

addition to those they had received from our project. The correct estimates also indicate

that, indeed, there is a positive and statistically significant relationship between being close

58We consider a control household to be “close” if the entrance is within 100 meters of a treated household.
We choose 100 meters as the cutoff, as some prior analyses of peer effects on a number of outcomes variables
had suggested that this distance was an important cutoff, past which the effect dissipates.

59This reassures that the impacts on household electricity consumption reported in Table 1, Columns 2
and 3, are well estimated.
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to a treated household and the number of CFLs that household has at follow-up.

7.2 Checks of aggregate reliability effects

To ensure that in Section 6.2 we are indeed measuring a local aggregate reliability effect, we

perform two checks.

First, we calculate the intra-cluster correlation in the number of reported outages at follow-

up. We have argued that intense saturation of treatment households within a transformer is

causing a reduction in outages at the transformer-level. Then, household reported outages

should be correlated with other household responses within the transformer. Our calculation

indicates a intra-class correlation of 0.56, which means that responses within transformers

are indeed highly correlated.60

Second, we consider the estimated reduction in outages in conjunction with the difference

between the expected and the estimated reductions in household electricity consumption to

confirm that our series of results tell a consistent story. We make this comparison for the

winter months, as that is the season for which we collected outage data.61 In Section 5, we

expected a reduction in households’ winter electricity consumption of approximately 42 kWh

per month (Appendix Table 3). However, what we actually estimated was a winter reduction

in electricity consumption of approximately 26 kWh per month (Appendix Table 4). This is a

difference of 16 kWh per month, which is equivalent to approximately 14.4 hours of additional

electricity consumption. In Section 6, we found the aggregate impacts of these electricity

savings to be two fewer days without electricity per month due to unplanned outages. In

conjunction with the previous result, this would mean two outages of approximately seven

hours in duration each. This is very reasonable and assures us of the consistency across

results.62

60Responses won’t be perfectly correlated with one another, as households in a transformer were surveyed
on different dates and therefore the reference point of “past month” differs across households within a
transformer.

61Winter is when outages are most prevalent and therefore when we would expect to see an aggregate
reliability impact, if one occurs.

62Anecdotal evidence from both consumers and the utility indicate that outages can last between a few
hours to a few days, depending on the repair required following the transformer overload.
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7.3 Evidence on alternative mechanisms

Although we cannot perform a direct test to rule out the possibility of a rebound, a number

of analyses are inconsistent with a direct or indirect rebound in electricity consumption. For

instance, in Figure 3 we provided an event-study graph of the impacts on electricity consump-

tion by season. We found that following a winter spike, savings in electricity consumption

returned to the expected amount in the spring.63 If there were a rebound, a persistent change

in behavior would be expected, and a reversal in the spring would have been unlikely. Fur-

thermore, using our detailed baseline and follow-up survey data, we can test for impacts of

treatment on appliance ownership and average monthly and daily use (results not shown).64

We found no effects of treatment on lightbulb use (which would be the measure of a direct

rebound) and only one significant effect of treatment on use of any household appliances

(which would be a measure of an indirect rebound). In fact, treatment households were

significantly less likely to report using electric heaters at follow-up. If anything, this finding

is evidence counter to a rebound effect.

7.4 External validity

We implemented a randomized saturation design to study the impact of energy efficient

lightbulbs on household electricity consumption and local electricity reliability in a lower-

middle-income developing country. A policy-relevant question that guides our thinking about

external validity is to what extent our results are location-specific or technology-specific.

A feature of this study’s setting, the Kyrgyz Republic, is that essentially all households are

electrified, formally connected to the network and metered individually. We believe that

research in this context does not harm the external validity of our study, rather it just helps

with the internal validity. It has the additional benefit of ensuring that we are not just

studying the responses of the richest households. The Kyrgyz Republic also has an extensive

electricity generation and distribution infrastructure. However, similar to other developing

countries, the Kyrgyz Republic has a problem of insufficient infrastructure capacity relative

63This is also supported by the regression results by season in Appendix Table 4.
64In both survey rounds we ask a number questions regarding the household use of appliances, including

(1) “On average, how many days per month do you use [the appliance]?” (2) “On average, how many hours
per day does your HH use [the appliance]?” Important to note, these specific survey questions are asking
about average use in the a month and in a day. In contrast, our survey question on outages asks about “the
past month.” For this reason, that we find no impacts on the use of lightbulbs is not inconsistent with our
aggregate reliability results.
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to demand. Constraints in the distribution system, more frequently than other factors lim-

iting generation capacity, are a source of unplanned outages in developing countries. Thus,

electricity reliability is largely driven by congestion within the electricity distribution net-

work. Aggregate electricity demand relative to infrastructure capacity, not infrastructure

alone, determines the probability of system overload, which results in unplanned outages.

As such, we believe this work is relevant to many developing countries in which demand for

electricity is either currently pushing the capacity of the current infrastructure or is rapidly

increasing such that we expect the constraint to be binding in the near future.

Our study setting is also unique in that it allows us to generate agregate reliability effects

and observe technological externalities with relatively low treatment saturation. However,

the point we are making is not that at some particular saturation of energy efficiency, tech-

nological externalities can be induced. Rather, we illustrate that these externalities are

possible to generate and that they are crucial in understanding the welfare implications of

such energy efficiency programs. Although similarly low saturation levels in other settings

may not induce such effects, their existence should not be ruled out. Instead, we should ask

how high the saturation ought to be to generate such aggregate effects and externalities. The

answer will depend on many factors, including the expected technologically feasible impact

of the technology distributed, the type of aggregate impact a program should induce, the

capacity of the electricity infrastructure, the number of consumers the infrastructure serves,

etc. Given a variety of factors, a program might need a higher or lower saturation to achieve

agregate effects and technological externalities. They may not be limited to a reduction in

outages, but may take other forms such as reductions in prices due to lower peak loads.

Although deployment of CFL technologies in higher income countries may not have similar

impacts, we believe our findings are not just specific to energy efficient lighting or developing

countries. In developing countries, lighting comprises a substantial portion of electricity

consumption for many households. For this reason, an energy efficient lighting intervention

can reduce a household’s electricity bill by a substantial proportion. In wealthier settings,

such as the United States and other developed countries, where households own a greater

number of electricity-using durables, introducing energy efficient lighting would likely result

in a smaller reduction in the electricity bill proportional to the total. In such settings, a

program wishing to induce an aggregate impact may need to focus on a technology that

accounts for a larger proportion of the electricity bill.

27



8 Conclusions

Through an experiment with a randomized saturation design, we provide several substantial

contributions to the literatures on energy efficiency, electrification, and electricity reliability.

We show that energy efficient lightbulbs can indeed lead to significant reductions in elec-

tricity consumption. We find that controlling for spillovers is critical, suggesting that some

estimates of energy efficiency that do not account for such spillovers may be downward biased.

In addition, we show that the energy efficient technology, when taken up at a high enough

saturation levels, can have a local aggregate reliability effect, in the form of fewer days

without electricity due to outages at the transformer level. By improving electricity service

reliability, the energy efficient technology becomes more valuable; households can use the

CFL for more hours when the electricity service is more reliable (i.e. providing electricity

for more hours per month at a lower cost than traditional lightbulbs). This is a classic

example of a technological externality, through which the returns to a particular technology

are increasing with the number of other adopters. The results in both Table 1 and those

in Appendix Table 4 highlight ways in which estimates of the effects of energy efficiency

could be biased, if we do not account for spillovers in take-up, potential externalities, and

heterogeneity in impacts across seasons.

Our study also highlights that an increase in consumption following the introduction of CFLs

is a welfare improvement, not a sign of ineffective technology. Other technologies inducing

positive externalities may create incentives for households to free-ride on the adoption by

others. We show that in this case, in which the aggregate effect increases the returns to the

technology, the externality may ameliorate (or even offset) the incentive to free-ride. Think-

ing about this interaction between technological externalities and incentivizing adoption is

important for both policy design and the development of new technologies.

As a result of this analysis, we can perform several variations of cost-benefit analyses both

with and without accounting for the aggregate benefits of improved electricity service reli-

ability. These calculations, shown in Appendix Calculation 4, demonstrate that accounting

for externalities in the welfare calculations is crucial. Benefit calculations that include both

reductions in electricity consumption and increased electricity services are more than double

the estimated benefits from electricity savings alone in the first year post-adoption (approx-

imately $15 in estimated benefits instead of $7). The benefits in year 1 of the program are

28



substantially larger than the upfront cost of purchasing and distributing the CFLs (approx-

imately $9 per household). These simple calculations provide a lower bound estimate of

benefits from such energy efficiency distribution programs, given they do not account for

other benefits, such as pollution reductions. An energy efficiency distribution program, such

as ours, looks much more favorable after making this correction.

Finally, the paper provides a novel application of a randomized saturation design at a policy-

relevant and technologically meaningful scale. In doing so, we demonstrate the usefulness of

such a design to inform our understanding of aggregate impacts and technological external-

ities from various interventions. This methodology can be applied to study other topics for

which decomposing private returns and technological externalities is important in measuring

the impacts of technology adoption and choosing between various policy options or program

subsidy levels.
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Figure 1: Randomized saturation process
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Figure 2: Stylized example of randomized saturation design
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Figure 3: Predicted and actual electricity reductions (kWh per month)

Notes: Distribution of CFLs began in March 2013, so by design the expected impacts are zero up until that time.
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Table 1: Impacts of CFL treatment on household electricity consumption

(1) (2) (3)

Treated*post -16.269* -29.949*** -29.949***
(8.803) (11.399) (10.434)

Control in treated TG*post -25.086** -25.086**
(12.579) (12.384)

Omitted group All control houses Houses in Control TGs Houses in Control TGs

Std error cluster level Household Household Transformer 
Households 899 899 899
Observations 31,143 31,143 31,143

Notes: Results are intent-to-treat. All regressions include month-by-year fixed effects, household fixed effects, and 
controls for heating degree days, number of days in monthly billing period, whether the household uses electricity for 
heating, and dummy variables for Treated and Post. Columns 2 and 3 also include a dummy variable for being a 
control household in a treated transformer.  Each month drops the top 1% of observations with respect to electricity 
use. All regressions drop households that moved during period between intervention and follow-up survey (101 
households).  "TG" is the abbreviation for transformer group.  Standard errors are in parentheses, with * significant 
at 10% level; **  significant at 5% level; and ***  significant at 1% level. 

Dependent Variable:  Monthly Household Electricity Consumption  (kWh)
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Figure 4: Number of days without electricity, by transformer-level treatment status
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Table 2: Technological externalities: improved electricity reliability

(1) (2)

TG low saturation -1.321 -1.164
(0.851) (0.868)
[0.433] [0.434]

TG high saturation -1.866** -2.162***
(0.812) (0.822)

[0.000] [0.000]

Household treatment status controls No Yes
Constant 3.810*** 3.811***

(0.836) (0.838)

p-value: TG low = TG high 0.228 0.047

Observations 838 838
R-squared 0.051 0.053

Dependent Variable: Number of Days Without Electricity (in past month) 

Notes:  "TG low" is a dummy variable that equals 1 if 10 to 14 percent of households in a transformer were assigned to 
treatment. "TG high" is a dummy variable that equals 1 if 15 to 18 percent of households in a transformer were assigned 
to treatment.   Omitted group is comprised of  households in control TGs. All columns control for the number of 
households in the transformer. The "Household treatment status controls"  are separate binary indicators that equal one for 
treated households.  Standard errors are clustered at the transformer level and shown in parantheses, with * significant at 
10% level; **  significant at 5% level; and ***  significant at 1% level.  P-values accounting for multiple-hypothesis 
testing (List, Shaikh, and Xu, 2015) are shown in brackets. 
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Table 3: Technological externalities: heterogeneous impacts by transformer treatment
saturation

(1) (2)

Treated household in TG low * Post -42.798*** -41.392***
(12.025) (13.320)

Treated household in TG high * Post -22.269* -20.337
(11.911) (13.752)

Control household in TG low * Post -42.986*** -50.243***
(13.713) (13.769)

Control household in TG high * Post 13.014 21.283
(16.355) (17.893)

Controls for reported outages No Yes
Omitted group Houses in Control 

Transformers
Houses in Control 

Transformers

Observations: households 31,143 26,043

Dependent Variable:  Monthly Household Electricity Consumption  (kWh)

Notes: The omitted group is comprised of houses in control transformers. "TG low" is a dummy variable that 
equals 1 if 10 to 14 percent of households in a transformer were assigned to treatment. "TG high" is a dummy 
variable that equals 1 if 15 to 18 percent of households in a transformer were assigned to treatment.  All 
regressions include time fixed effects, household fixed effects, and controls for heating degree days, number of 
days in monthly billing period, and the use of electric heater. Each month drops the top 1% of observations with 
respect to electricity use. All regressions drop households that moved during period between intervention and 
follow-up survey (101 households).  Standard errors are clustered at the transformer level, with * significant at 
10% level; **  significant at 5% level; and ***  significant at 1% level. 
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Table 4: Spillovers: CFL stock at follow-up

(1) (2) (3)

Treat 0.185 0.442** 0.479**
(0.174) (0.212) (0.219)

C close to Treat 0.458**
(0.207)

Control in treated TG 0.502**
(0.205)

Constant 0.617*** 0.365* 0.332*
(0.187) (0.204) (0.199)

R-squared 0.012 0.013 0.012

Omitted group All controls Controls far 
from T 

Controls in 
control TGs

Observations 834 834 834

Notes:  All specifications control for the total number of households in the transformer and 
the number of CFLs received at baseline through the project.  A "C close to Treat" is an 
indicator for a control household located < 100 meters from treated household.  "Controls far 
from T" are control households location > 100 meters from a treated household.  Standard 
errors are clustered at the transformer level, with * significant at 10% level; **  significant at 
5% level; and ***  significant at 1% level.  

Dependent Variable: Number of CFLs at Follow-up 

40



Appendix: For on-line publication
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Appendix Table 2: Household-level randomization check

All Control Treatment
Joint F tests  

(p-value)

(1) (2) (3) (4)

General characteristics 
Household head completed secondary school 0.840 0.867 0.818 0.090
Household income past month (KGS) 10900 11463 10427 0.138
Household income past month  per capita (KGS/person) 3668 3740 3608 0.603
Owner-occupied house 0.912 0.919 0.906 0.506
Number of people living in the home 3.6 3.7 3.5 0.218
Time at address (months) 203 201 204.137 0.789

Housing characteristics
Single-family dwelling 0.793 0.829 0.762 0.053
Number of rooms 4.302 4.245 4.35 0.409
Home made from  brick 0.535 0.569 0.507 0.100
Floors that are wood 0.877 0.864 0.887 0.388
Age of dwelling (years) 41.29 41.27 41.30 0.987
Electricity meter for single house 0.991 0.993 0.989 0.546

Electricity consumption practices
Total number of appliances 8.393 8.578 8.238 0.210
Lighting hours per day 17.5 17.9 17.2 0.643
Think about saving electricity 0.946 0.934 0.955 0.500
Do something to save electricity 0.86 0.829 0.885 0.185
Total light bulbs in house 6.2 6.5 6.0 0.128
Total incandescent bulb in house 6.1 6.3 5.8 0.177
Believe CFL use less energy 0.305 0.319 0.292 0.436
Rooms heated in winter 3.14 3.12 3.15 0.764
Days without electricity in the past month 1.66 1.58 1.75 0.338

Number of households 1000 457 543

Note: In March 2013, the exchange was 1USD = 48 KGS.  For these calculations, the winter months include November through 
February and summer months include May through August. Baseline surveys were implemented in the late spring and early 
summer. 
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Appendix Figure 1: Seasonality of electricity consumption pre-treatment
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Appendix Calculation 1: Number of residential buildings

To control for the total number of households within various radii of distances from project

households, we use spatial data on residential building locations available through Open-

StreetMap.org. The ArcGIS building layer for the Kyrgyz Republic was downloaded from

OpenStreetMap in March 2015. We calculate the total number of residential buildings within

radii of project households. Radii were of the following sizes: 100 meters, 200 meters, 300

meters, and 400 meters.

The following building types are considered residential for the calculation: residential, house,

farm, dormitory, and apartment. Industrial and commercial buildings were omitted from the

residential building count. ArcGIS aerial photographs were used to cross-check the building

counts and also to manually add building polygons in areas not completely covered in data

from OpenStreetMap.

Calculations needed to account for multi-family buildings, which are prevalent in the study

district. Buildings were defined to be multi-family residential buildings if (1) the building

polygon has an area of 369 square meters or more or (2) at least one side of the building

is longer than 19.4 meters. These thresholds were made based on a random sampling of

buildings and visual interpretation of the images. Fortunately for variable construction,

essentially all multi-family residential buildings in this region were constructed during the

Soviet Union and were built according to very standardized specifications. This permits us

to make several assumptions regarding the number of households per building. We assume

these multi-family buildings have 5 floors each and that each stairwell has 3 units per floor.

The number of stairwells assumed depends on the size of the building.

45



Appendix Calculation 2: Technologically feasible electricity savings

from CFLs

The expected technologically feasible electricity savings from the treatment can be calculated

through the following equation:

Expected electricity savings/month = # Incandescent bulbs replaced with CFLs * (CFL

wattage - Incandescent wattage) * (# hours Incandescent bulbs used per day) * (days in a

monthly billing period)

We calculate the technological feasible electricity savings using data from the project pilot in

Fall 2012, the baseline survey in Spring 2013, and the intervention through which CFLs were

distributed. On average, treatment households received 3.2 CFLs through the intervention.

We know from piloting exercises and the baseline survey data that 100 watt incandescent

bulbs were most common in households prior to the intervention. We selected 21 watt CFL

bulbs as replacements because they were rated to be 100 watt equivalent bulbs. Therefore

we know that typical household in our treated group is shifting from 100 watt to 21 watt

bulbs.

The calculations on lightbulb usage employ data on the self-reported hours of lighting use at

baseline. Estimates of hours of lighting use throughout the year are extrapolated using data

on the timing of sunrise and sunset in the region. These predictions assume behavior with

respect to lighting and other electricity uses remain constant after the intervention, which is

consistent with our results comparing various behaviors at baseline and follow-up.

These calculations of the expected impacts on electricity consumption are shown in the table

below. Based on these data, electricity consumption is estimated to decrease by between

26 kWh per month (summer) and 42 kWh per month (winter). The percent by which the

electricity bill is expected to decrease in each season is also calculated.
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Appendix Table 3: Expected impacts on electricity consumption

Assumptions Winter scenario Spring/Fall Summer scenario
Average number of light bulbs replaced 3.2 3.2 3.2
Incandescent wattage 100 100 100
CFL wattage 21 21 21

Average hours per use per day 5.5 4.5 3.5
Average monthly bill (kWh) 586 340 245

Prop bill in lighting baseline 0.090 0.127 0.137

Expected CFL savings (kWh) 41.712 34.128 26.544

Expected reduction in bill (no rebound) 7.1% 10.0% 10.8%

Notes:  These calculations are for an estimated scenario. For these calculations, the winter months include November through 
February; spring/fall months include March, April, September, and October; and summer months include May through August. 
Average number of light bulbs replaced is based on the actual numbers of CFLs distributed on average through the intervention.  
Average hours of use per day are calculated using the baseline survey data and data on sunrise and sunset to estimate for the rest 
of the year. CFL wattage is the actual wattage for the light bulbs that were distributed.  Incandescent wattage is the typical wattage 
found in households at the time of the baseline survey. Calculations are assuming an average of 30 days per month. Average 
monthly electricity bill is calculated using baseline electricity use amongst households in our sample during the year prior to the 
intervention. 
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Appendix Table 4: Impacts of treatment on household electricity consumption by season

(1) (2) (3)
Winter Spring/fall Summer   

Electricity 
consumption (kWh)

Electricity 
consumption (kWh)

Electricity 
consumption (kWh)

Treated*post -25.538 -32.375*** -8.835
(32.171) (10.985) (6.672)

Control in treated TG*post -26.314 -8.373 -12.114
(35.203) (13.906) (8.041)

Households 899 899 899

Observations 10680 9784 10679
Notes: The omitted group is comprised of households in control transformers. All regressions include time fixed effects, 
household fixed effects, and controls for heating degree days, number of days in billing period, and dummy variables for 
Treated and Post. Columns 2 and 3 also include a dummy variable for being a control household in a treated transformer.  
Each month drops the top 1% of observations with respect to electricity use.   All regressions drop households that moved 
during period between intervention and follow-up survey (101 households).  Standard errors are clustered at the 
transformer level, with * significant at 10% level; **  significant at 5% level; and ***  significant at 1% level. 
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Appendix Calculation 3: Back-of-the-envelope expected peak load

reduction

Times of peak demand are in the early morning and in the evening. Lighting is dispropor-

tionately “on peak.” To better understand the impact that switching from incandescent

bulbs to CFLs could have on peak load, we perform a back-of-the-envelope calculation based

on data from our sample and some informed assumptions. The calculation is as follows:

• We assume a household’s winter monthly electricity demand is 630 kWh per month,

which is based on data from our sample.

• Dividing this by the number of days per month and number of hours per day, we

estimate an average hourly winter electricity demand of .875 kW.

• We assume that peak load is approximately 70% more than average load, which is

in line with the U.S. Energy Information Administration’s calculations for peak-to-

average electricity demand ratios. Therefore, household peak is 1.49 kW.

• We assume the household has 4 incandescent bulbs (100 W each) that are replaced by

CFLs (21 W) used in our project. This change would reduce peak load by 0.32 kW.

• Given our estimated peak demand of 1.49 kW, reducing peak load by 0.32 kW repre-

sents a 21% reduction in peak demand for a household.

• For a transformer with 20% of households making this shift to CFLs, this would mean

a 4% reduction in peak load for the transformer.
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Appendix Calculation 4: Cost-benefit analysis of the CFL program

To understand the welfare implications of such a CFL distribution program, we perform

some simple cost-benefit calculations. By using the estimated impacts of CFLs on electric-

ity savings and the aggregated impacts on reliability of electricity services, we are able to

demonstrate the implications of performing these welfare calculations both with and without

accounting for reliability improvements.

To simplify these calculations, we perform the cost-benefit analysis for the first year of the

CFL program. The one-year analysis is sufficient to demonstrate the importance of the re-

liability impacts for welfare calculations. In addition, this simplification is useful for several

reasons, in that we: can use the estimated coming from our experiment, which measures

impacts over the course of 18 months following the CFL distribution; avoid having to make

assumptions about the life span of the CFLs; do not have to worry about multi-year equilib-

rium adjustments in consumption; and, finally, we need not make any assumption regarding

the discount rates.

Cost calculations

We perform program cost calculations from the perspective of a government entity imple-

menting an energy efficiency program through a door-to-door campaign. These calculations

are made based on a CFL distribution program with the design of our experiment: in which

CFLs are distributed through individual house visits, at which time information on the ben-

efits of CFL adoption are provided to households. Incandescent bulbs currently in-use at

the households are not taken from the households. To encourage households to install the

CFLs quickly, the entity distributing the CFLs can remove the packaging at the time of dis-

tribution. Although such door-to-door campaigns may be effective at inducing technology

take-up, this is one of the more expensive distribution options available. Cheaper distri-

bution programs include ones that distribute coupons at stores or through mailings, which

permit households to receive the technology for free or a subsidized price.

In the calculations, we divide costs into two components: the cost of CFL purchase and

the cost of distributing the technology through the door-to-door campaign. Calculations are

shown in Appendix Table 5. We base these calculations on details from our own experiment,

such as the price per CFL, the number of households served by the program, the average

number of CFLs distributed per household, etc. These calculations do differ from our ex-
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periment in that here we assume the government bears 100% of the program costs. This

need not be the case given that we find households are willing to pay a positive price for the

CFLs (Meeks, 2016). We can shift the assumptions as to the number of households such a

door-to-door campaign can reach per day, but such shifts do not alter the costs substantially.

Benefit calculations

We perform three versions of benefit calculations for such a CFL distribution program, as

shown in Appendix Table 6. Important to note, these calculations do not include the value

of any reductions in pollution resulting from the CFL adoption.

Version A is our most simplified calculation of average benefits for households in all trans-

formers. This is based on the estimate of electricity consumption impacts from Table 1,

Column 2. This estimate does not account for any aggregate impacts in reliability of elec-

tricity services and is therefore an underestimate of the benefits. Even so, the benefits per

household in the first year are approximately $1.20 less than the costs per household.

Version B estimates the benefits from the CFLs among households that do not have any

changes in reliability of electricity services. These calculations use estimated electricity sav-

ings amongst treated households in transformers not experiencing any reliability improve-

ments (see Table 4, Column 1). Here the benefits per treated household in year 1 are greater

than the costs per household.

Finally, Version C of the calculation includes the benefits from the CFLs amongst households

that experience improvements in the reliability of electricity services. These calculations use

the reduction in electricity consumption amongst treated households experiencing reliability

improvements (see Table 4, Column 1). Part 2 of these calculations are still likely an under-

estimate of household benefits given that electricity prices were very low. In this calculation,

the benefits per treated household in year 1 are nearing double the costs per household.
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Appendix Table 5: Costs of CFL Distribution Program

Part 1: CFL purchase cost 

Average # CFLs distributed 3.2 per household
Cost per  CFL 120 KGS
Cost per household 384 KGS 
Number of  households 543  
Total CFL purchase cost 208512 KGS 

Part 2: CFL Distribution cost 

Number of  households 543
Households visited per day 12
Time to distribute CFLs 45 Days
Cost per workday 467 KGS 
Total distribution cost 21132 KGS 

Total Program Cost (Purchase+ Distribution):

Costs  229643.75 KGS 
Exchange rate 48.00 KGS = 1 USD 
Costs 4784.24 USD 

Cost of Program Per Household  8.81$         

COSTS FOR CFL DISTRIBUTION PROGRAM
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